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We generalize the prescription of Kadanoff and Ceva for the computation of disorder variable 
correlation functions in the Ising model for continuous field theories with U(1) symmetry. By 
considering the product of order and disorder variables, we obtain a path integral representation 
for fields with generalized statistics. We discuss in detail the cases of massless Thirring and 
Schwinger models. 

1. Introduction 

It is a property of two-dimensional world that the product of bosonic fields may 
result in a new field with generalized statistics ("spin") not necessarily Bose or Fermi. 
These fields with unconventional statistics play a central role in models like the chiral 
Gross-Neveu [1, 2], Z(N) in the scaling limit [3] and allow for a generalization of the 
Schwinger and Thirring models [4]. 

In four dimensions, the analogous feature is the possibility of building a fermionic 
field as a product of bosonic ones, related by duality relation [5], so that the dyon 
build-up from scalar electric and magnetic monopole fields behaves as a fermion [6]. 

The functional integral formulation of a field theory is only known for fermion or 
boson fields. It is the purpose of this work to formulate the functional integral directly 
in terms of generalized statistics fields. 

To do this, we make use of the statistical mechanics concepts of order and disorder 
and observe that at the classical statistical mechanics level, a bosonized field in the 
Mandelstam form [7] may be viewed as a product of order  and disorder variables. 

Kadanoff and Ceva [8] have showed how to compute correlation functions of such 
products of order and disorder variables, cr and /z, in the two-dimensional Ising 
model, where it is known that a fermion has the structure ~rtz [9]. 
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The method consists in modifying the couplings (ferromagnetic~antiferro- 
magnetic) along a path joining the disorder variables. Due to the symmetry of the 
partition function, it is proved that this procedure is path independent. 

We generalize their method to a class of continuous field theories and arrive in this 
way at a direct bosonization of the functional integral ~' which allows its formulation 
for generalized statistics fields. 

In sect. 2, we apply the method to the massless Thirring model and obtain the 
Schwinger correlation functions for general spin. We also prove the equivalence of 
this model with a two-dimensional electrostatic system composed of electric charges 
and strings of electric dipoles ("magnetic monopoles"). The correlation functions are 
the exponentials of the interaction energy of this system and the ~ field may be 
considered as a bound-state charge-"monopole" (dyon). Since the charges of this 
electrostatic system correspond to the pseudocharge and the "magnetic-monopoles" 
correspond to the actual charge, it is convenient to modify one's language, calling 
charges what we had called "magnetic-monopoles" and vice-versa. 

The selection rules of the model appear in a very natural way in this formulation. 
We show that the euclidean space has a many-sheeted structure determined by the 

spin, and associate the various orderings of the correlation functions with this 
structure. 

We show that our procedure is path independent, as in ref. [8]. In the massive 
Thirring model, path independence implies quantization of the "magnetic mono- 
poles" (actual charge). 

In sect. 3, we apply the method to the massless Schwinger model (QED2). In this 
case the functional integral is path dependent, leading naturally to the gauge 
invariant correlation functions both in the 0 and n vacua [10]. 

We prove that the massless Schwinger model is equivalent to a two-dimensional 
magnetostatic system of magnetic charges and strings of magnetic dipoles (actual 
electric monopoles) embedded in a magnetic plasma. Again the gauge invariant 
correlation functions are the exponentials of the interaction energy of this system, 
and the ~O field may be considered as a bound-state charge-monopole. The effect of 
the plasma is to make the string physical, that is, a tube of electric flux, thus confining 
the actual charges. We may, therefore, understand the confinement of the Schwinger 
model as a condensation of magnetic monopoles in the vacuum, in close analogy to 
the standard picture of 4-dimensional confinement [11]. This condensate confines 
the actual charges. 

All features involving many-sheetedness and ordering that appeared in the 
Thirring model are also manifest in the Schwinger model. 

By reinterpreting the functional integral, and not considering the cuts along the 
strings, we also obtain the gauge dependent correlation functions in the Landau 
gauge. The functional integral is path independent in this case. 

'~ After  the completion of this work, our attention was called by R. K6berle to a paper by Zamolod-  
chikov [23], where some of our results on the Thirring model  are already contained. There are also 
some related results within the statistical mechanics framework [25]. 
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Our method also allows for a generalization of the Schwinger model for arbitrary 
spin. 

In sect. 4, we summarize our results. 

2. Thirring model 

We may write the massless Thirring field in the form [7] (we will not worry about 
constant multiplicative factors that are present in the bosonized form of 0): 

&(x )=exp  i a y S ¢ ( x ) - i b  s O.eb(z)dz~, 1 ' (2.1) 
,C 

where q~ is a free massless bosonic field (the pseudo-potential),  the integral is taken 
along an arbitrary path C and a and b are constants determining the spin of 0, 
s = ab/2rr  [12]. 

Let  us call 

tr(x) = exp {iaySda (x)}, 
~X3 

,C 

Then, we have 

it(t, yl)o-(t, xl) = o-(t, Xl)t~ (t, y~) exp {i2~rySsO(x~ - yl)}, 

(2.2) 

(2.3) 

that is, the commutation between tr and tt produces a dislocation in the ~b field if cr is 
to the right of tt and leaves it unchanged otherwise. This is the analog of the 
commutation relation between order and disorder variables in the Ising model, if we 
note that the symmetry of that model is o - ~ - o -  and of the Thirring model is 
~b ~ b  +K.  

Therefore,  we may consider the 4J field of the Thirring model as a product of an 
order and a disorder variable and generalize the prescription of Kadanoff and Ceva 
for the computation of correlation functions of such objects [8]. 

Thus, we write, for the order-order  correlation function, the euclidean functional 
integral 

(~(x)~(y)>=Nf [D~]exp {~ f d2zqbO2qb}exp{ia[ySxCb(x)+y:qb(y)]}, (2.4) 

where N is the usual normalization factor. We may put (2.4) in the form 

where 

( o ' ( x ) d ' { y ) ) = N f  [D~b] exp { - ;  d2z[ - ldpaz~b+qb(z )a ( z ) ] } ,  (2.5) 

~(z) • ~ 5 = - l a [ , / x S ( z  y)] .  (2,6) --X) + yyt~(Z -- 
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The integral (2.5) is saturated by the solutions of the Poisson equation V2~b = a. To 
solve it, we impose the condition that ~b vanishes on a circle of radius R and then take 
R going to infinity. The result is straightforward, giving 

(o'(x)~(y)) = exp {½f d2za(z)~b,~(z)} , (2.7) 

with 

dp,(z)=-ia[ySxD(z x)+ 5 _ yvD(z  _y)]+iaD(oo)[ysx + ysy], (2.8) 

where D ( z ) = - ( 1 / 2 ~ r )  In [z] is the massless Green function, satisfying O2D(z)= 
-8(z) .  

Eq. (2.7) with (2.6) and (2.8) is the exponential of the interaction energy of an 
electrostatic system of two charges placed at x and y. 

Evaluating (2.7), and neglecting the classical self-energy terms, we arrive directly 
at the renormalized correlation functions 

s 5 x]+a2D(oo)[l+y,,3,v] . (2.9) (O'R(X)O'R(Y))=exp ~-'~YxY~, l n l y -  .s s 

The elements (1, 1) and (2, 2), vanish, because of the last term in (2.9), leading to 
the chiral selection rule. For the non-vanishing components (1, 2) and (2, 1), we get 

(OvR(X)O 'R(Y )>12 = ( O 'R ( X) I ~ 'R ( y ) > 2 1  = [Y - -  X I -  a 2/2 ~r. (2.10) 

This correlation functions are the continuous limit of the low-temperature regime 
of the X - Y model [13]. 

In the same way as in (2.4), we write for the disorder-disorder correlation function 

(2.11) 

where C is an, arbitrary path joining x and y and the exponential of the line integral is 
real since we are working in the euclidean region. 

We may put (2.11) in the form 

(tz(x)/2(y)) = N I [D~b] exp { -  I d2z[-½rb32d~+cb(z)fl(z)]}, (2.12) 

with 

fl(z) = - b  e"" O~8(z -~ )  d~, .  (2.13) 
,C 

Let us show that (2.12) is path independent. To do this, observe that 

b e""3~b(z )dz~ ,=b  e ' w " O ~ ( z ) d z , + b  02&d2z,  (2.14) 
,C ,C' 
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where S is the region closed by C and C'. Inserting (2.14) in (2.11) and making a 
change of variable d, -'* ¢ + b within the region S, we obtain the same expression 
with C' instead of C. The boundary divergent term which eventually could arise can 
be incorporated in the renormalization factors of/z and ft. 

Again (2.12) is saturated by the solutions of the Poisson equation with the source, 
/3, given by a string of electric dipoles. 

Computing (2.12), we obtain 

(iz(x)fi(y)) = exp {½I d2z/3(z)&a(z)} ' (2.15) 

where 

Ca(z) = ~ [arg (z - x ) - a r g  (z - y)]. (2.16) 

Evaluating the integral in (2.15) we arrive at 

{ b2 } 
(/ZR(X)fi, R(y)) = exp --~--~ In ly -xl - ly-xl  -b2:2"~. (2.17) 

In the various steps leading to (2.17) we have used the Cauchy-Riemann equations 

fx v 
e~'"Ov[arg(z-x)-arg(z-y)]=8~'[ln[z-xI-lniz-yl]-27r 5(z -~ )  dj~,, 

,C 

(2.18) 

and neglected the terms corresponding to the self-energy of the string and of the 
"monopoles" at its ends, getting in this way the renormalized disorder correlation 
functions. 

Eq. (2.17) is the exponential of the interaction energy of a "monopole"-"anti- 
monopole" pair placed respectively at x and y. Note that the fact that while charges 
in the computation of the order correlation function are pure imaginary, whereas the 
monopoles appearing in the disorder correlation functions are real, is trivially related 
to the fact that opposite charges attract each other and opposite currents repel. 

Since the (tt) correlation function vanishes because of the long-range behaviour of 
the monopole field, one obtains the charge selection rule of the Thirring model. 

To arrive at the ~ field correlation functions, we consider now the four-point 
order-disorder Schwinger function 

(d/R(X)~R(y)>= lim (o'(xl)l~(x2)d'(yl)fi(y2)>. (2.19) 
XI.x2~X 
Yl.Y2~y 
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In the same way, we obtain for (2.19) 

{ a2 l y l - x x l - ~ - ~ l n  ly 2 (0R(X)gR(y)) = lim exp s 5 b 2 . . . .  ~-,x ~ "/~y y In -x21 
y l , Y 2 - ~ y  

i a b  F s 5 + ~--~ t rx  arg ( x l - y 2 ) -  Yy arg ( y l - x 2 ) -  ysx arg (xl =x2) 

+ ,/sy arg (yl - y2)] + a 2D(oe)[1 + ~/x,/y ] . (2.20) 

The above expression now corresponds to the exponential  of the interaction 
energy of a system of imaginary charges and real "monopoles" .  The selection rules 
obtained before are also present here. 

Notice that the mixed four-point  function is now multisheeted, and path indepen- 
dence is valid only if charges do not cross strings, as in the analogous Ising problem 
[8, 9]. This fact will reflect itself in the ambiguity related to the various orderings of 
correlation functions. 

When we take the limit in (2.20), there appears  an ambiguity arg (0) + arg (0). This 
ambiguity is related, to a direct ion-dependent  renormalization factor already 
present  in the operator  formulation of the theory [14]. We overcome it by taking the 

limit in opposite angles. 
im2~s  A second ambiguity of the form e , m = 0, + 1, +2 . . . . .  arises depending on the 

number  of times, m, we cross the string when we take the limit Xl ~ x2 = x and 
yl -~ y2 = y. This ambiguity is intrinsic of our formulation, and as we shall see, highly 
desirable. 

Then, after taking the limit we obtain, for the (1, 2) component ,  for instance, 

(~(x)~R(y)h~ 
~2~ = e  e x p { - [ ( a a + b 2 ) / 2 , r ] l n ] y - x l - i s [ a r g ( y - x ) + a r g ( x - y ) ] } .  (2.21) 

Eq. (2.21) is, except for the ambiguity factor, exactly the Schwinger function 
corresponding to the continuous spin, Klaiber solutions [4, 12]. 

The general correlation function for the ~ field would be obtained by considering 
the exponential of the interaction energy of a system with an arbitrary number  of 
charges and "monopoles"  [15]. 

Observe now that our functional integral is the same for (~0) as well as for (00). 
These functions are in general different and the ambiguity factor in front of (2.21) 
gives us the various possibilities. It is a signal of the many sheetedness of the space, 
the number  of sheets depending on the spin, For bosons there is only one sheet, for 
fermions two; for ' spm-~, for instance, there are three sheets and so on. 

For fermions, we obtain ( 0 f )  by taking the limit with the two charges in the same 
sheet (rn = 0, +2 . . . .  ) and ( ~ )  is obtained with one of them in the first sheet and the 
other in the second one (m = +1, +3 . . . .  ). 
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For unconventional spin, the Schwinger functions of the 0 field are themselves 

multivalued. We illustrate the s = ½ case. Starting from (0q~) and changing the order 
in the Schwinger function, we get: 

(0~) ,  = e-i2~/3(~0)1 = e-i4~/3(O~)z = e-i6=/3(~0)2 

= e-8~'/3(0~) 3 = e-i1°~/3(~0) 3 = e-i12~'/3(01~)1 . . . .  , (2.22) 

indicating that (04~) and (470) have three sheets, differing each one by the factor 
e i4~/3. The subscript indicates the sheet in consideration. (0q~)1 has the same value as 

(470)2, (047)2 has the same value as (470)3 and (0~)3 has the same value as (470)x. 
Taking the limit with the two charges in the same sheet of our euclidean space 

(m = 0, +3 . . . .  ), we obtain (0~)1 or (~0)2; with one charge in the first sheet and the 
other  in the second one (m = 1, 4, 7 . . . .  - 2 ,  - 5 ,  - 8  . . . .  ), we obtain (0~)2 or (470)3; 
and taking the limit with one charge in the first sheet and the other in the third one 

(m = 2, 5, 8 . . . .  - 1 ,  - 4 ,  - 7 . . .  ), we get (0~)3 or (~0)1. 
Let  us now observe that the spin of the field 0 is closely related to the topology of 

certain spaces. Consider the curves connecting the two charges before we take the 
limit. In the many  sheeted euclidean space we have been considering, with two 

branch points placed at x2 and y2, these curves belong to topologically inequivalent 
classes, characterized by the number  m. 

Therefore,  we cannot associate a certain ordering of the correlation functions with 
a unique topological class. 

Consider now a two-dimensional  space with a circular hole with diammetrically 
opposite points identified. If we place the two charges in this space, the curves 
connecting them, belong to only two topological classes characterized by m even and 
rn odd respectively (m is the number  of times a certain curve crosses the hole). This 
hole is a deformation of the cut along the string so we see that for fermions, the two 
possible orderings of the correlation function are associated with topologically 
inequivalent classes of this space. 

For spin-~, for instance, we must consider a space with a circular hole in which 
every three points placed at 120 ° from each other are identified. This space has three 
topological classes, each one corresponding to a certain sheet of the s = ½ Schwinger 
functions. 

In this way, for every value of the spin we way construct a space whose topology is 
associated with the various orderings of the correlation functions. This observation 
suggests a topological interpretation for the statistics of a field. 

Let  us finally remark  that constructing the disorder--disorder correlation function 
for the massive Thirring model  along the lines described in eqs. (2.1 1)-(2.13), we 
would be able to show that due to the cosine term, path independence implies 
quantization of b. This agrees with what is known from an analysis of the opera tor  
solution [12]. 
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3. Massless Sehwinger model 

The bosonized form of the Schwinger model lagrangian density in the euclidean 
region is 

~sch=-½dpO2d~+~F.~Fu~+Sf"~e O~OA.+~---~e OVA., (3.1) 

where ~b is the pseudopotential and the last term exhibits the 0 dependence of the 
theory. 

In the functional framework we shall integrate the negative exponential of (3.1) 
with the external leg insertions over ~b, and the transversal A, .  

Notice that contrary to the conventional Grassmann formulation, the current that 
couples to the electromagnetic field is identically conserved. A gauge tranformation, 
therefore, leaves the fermionic degrees of freedom unchanged. This means that in 
this framework we will automatically compute the gauge invariant correlation 
functions. For instance, we have 

(T(x' Y))-~(~O('y) exp {-ie f yx,c A~, (~) d~'.} ~(y) )  

= N I [DAT][D4 ~] e-Ssoh 

• 5 
x e x p  ~4rb, x,~(x)-i e "" a ~ d , ( z ) d z . + ' / ~ ( y ) ]  , 

,C 

(3.2) 

where the coefficients a and b corresponding to the fermionic degrees of freedom 
have been fixed to be both equal to ,/Tr, since the Schwinger model couples the 
electromagnetic field to a canonical fermion (a = b = ~/~r). 

Integrating first over AT, all the possible windings of the electromagnetic field are 
included, since the electromagnetic action is finite for any topological charge. 
Therefore, in this case, (3.2) should describe the 0-vacua correlation function: 

(OIT(x, y)]0) = N f [D,/,] exp [ - f  d2z{ ~b(-O 2 e2 

1 .  5 5 + ~,y ]} (3.3) x exp {stO[yx 

where c~ and 13 are given by (2.5) and (2.12) respectively. 
Note that (3.3) differs from the corresponding equations [(2.5), (2.12) and (2.19)] 

of the Thirring model by the mass that the ~b field has acquired. The origin of this 
mass can be traced back to the fact that the coupling to the A~, field provides us (going 
now to a language dual to the one employed in sect. 2) with a background of magnetic 
sources, so that the A t integration has the result of producing a magnetic plasma. It is 
immediately apparent that due to this mass term the chiral selection rule will be lost 
and that the 0 vacua can be regarded as a chiral (magnetic monopole) condensate. 
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The 4~ integration is now saturated by the solutions of the massive Poisson 
equation yielding the result [15]: 

5 5 1 . j  t ` v  ct/3 ~, "0 (O[T(x, y)]O) = + exp -zry~yyA(y --x) +~zr ur/,~e e O~ O~A(~ - r/) 
, ,C  

f' } r 5 t,~ 5 t̀ ~ e-~a(o) +i~r t'rxe OM(x-~;)+'rye  0~l(y-~)]d~t `  
d x , C  

1 .  5 5 
x exp {stO['rx + "rr]} • (3.4) 

The sign ambiguity has the same origin as in the Thirring model and is related to 
the two possible orderings. A(z) is the massive two-dimensional Green function. 

This equation indeed reproduces the unrenormalized gauge invariant 2-point 
function of the Schwinger model computed by standard methods [16, 24]. 

Due to the short-range nature of the ~b potential, the electric field is concentrated 
in a thin tube along the string. The aphysical string of the Thirring model now 
becomes a physical confining tube of electric flux whose width is of order 1/e. The 
interaction energy, now depends on the shape and size of the string, as is clearly seen 
from (3.4). 

The present description of QED2 closely parallels the expected behaviour of a 
4-dimensional confining theory [11]. 

The ,/zr gauge correlation functions of ref. [10] can be obtained by simply 
removing the string with the associated flux tube (/~ = 0 in eq. (3.3)) obtaining thus for 
the first time a path integral formulation for this non-canonical gauge. 

We see that the spurionization of charge of this gauge reflects itself in the total 
absence of charges (endpoints of magnetic dipole strings) in the corresponding 
classical system. 

Hence, performing the ~b integration in (3.3) with/~ = 0, we get the well-known 
result 

(Olt~R(x)gr~(y)lO)=exp 5 5 1. 5 5 exp {~tO[ "r x + yy]} {--~-'rx'ryA(y -x)}  . (3.5) 

In order to study the tunnelling amplitudes between different n vacua, and to 
identify the relevant winding numbers of the A t , field, it is convenient to perform first 
the integration over fermionic degrees of freedom. Using our method, we reobtain 
the results of refs. [16, 17] without having to resort to clustering properties and 
without explicit use of the 't Hooft [18] Atiyah-Singer [19, 20] mechanism. 

Doing the ~b integration, we get 

(niT(x,  y)]O)=+(OR(X)d~R(Y))oN f [DA(~)] exp { - ~  d 2 z [ 1 A T ( - c 3 2 + e 2 ~ a T  
rr] 

• T [  • t`A 5 - "ryD(z - y ) ]  t e A t ` - l e  8A[ ' r~D(z -x )+  5 
i_  

+~---e "~ O ~ [ a r g ( z - x ) - a r g ( z - y ) ]  , (3.6) 
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where we now restrict ourselves to configurations with winding number n and 
(~0~(x)47a(y))0 is given by (2.20) (with a = b = x/zr). 

Observe that the only configurations that will contribute in (3.6) are the ones 
whose Chern number n are equal to half of the chirality carried by the operator 
T(x ,  y), in our example either 0, +2. 

Using the fact that asymptotically A (f) behaves like (2 I rn /e )e  ~,v O~D (z) ,  we might 
collect the long distance diverging contributions in the multiplicative factor 

exp {lzrD (oo)[2n - (V 5 + ysy )]2}, (3.7) 

which corresponds to the realization of the 't Hooft-Atiyah-Singer mechanism in 
this formulation. 

Computing (3.6) with the correct winding number we reobtain eq. (3.4). 
Again, by dropping the string and performing first the & integration, we are led to 

the x/~- gauge tunnelling amplitudes. It is straightforward that in this case the relevant 
winding number contribution to the one-point function (~(x)) is +½. These 
configurations which are known to be related to the confining properties of the 
Schwinger model [21, 24] are not compactifiable, and the fact that this one-point 
function is non-vanishing had not yet been understood within the traditional path 
integral framework. Nevertheless, our results suggest that there is some generaliza- 
tion of 't Hooft-Atiyah-Singer mechanism for such configurations. 

By reinterpreting the right-hand side of (3.6) as being defined in the many-sheeted 
euclidean space, we can obtain the gauge dependent tunnelling amplitudes 
(nl~ (x)~(y )10) in the Landau gauge. This reinterpretation amounts to dropping the 6 
term in the Cauchy-Riemann equation (2.18) which will eliminate the string and lead 
us directly to the expression obtained in ref. [22] in the traditional way. The 
functional integral now becomes path independent, up to the ambiguity in sign. 

In all cases considered here, we can obtain the more general correlation functions 
by simply introducing more charges (strings) and magnetic monopoles and comput- 
ing the exponential of the corresponding classical interaction energy. 

The previous discussion could be generalized to the coupling of the electromag- 
netic field to a generic Thirring field (a and b arbitrary). The main novel feature 
would be that the relevant winding number of the A ,  field would be integer multiples 
of the spin of the Thirring field and therefore in the generic case, non-compactifiable 
[15]. 

All that we said about many-sheetedness orderings and path topology in sect. 2 is 
also true here. 

4. Conclusions 

Based in the order-disorder structure of two-dimensional bosonized fields, we 
have given a general functional integral formulation for fields with an arbitrary spin. 
Of course, if we have Fermi or Bose statistics, our formulation reproduces the results 
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ob ta ined  by using s tandard  methods .  Nevertheless ,  it gives a new insight into those 

problems.  

In  the Thi r r ing  model ,  for instance,  w e  have been  able to ob ta in  with our  

funct ional  integral  method ,  the genera l  Kla iber  solut ion.  Such a fo rmula t ion  will 

cer ta inly  be needed  in o ther  models  where  general  statistics fields play a role. For  

ins tance  we expect  it to be  useful  in ob ta in ing  G r e e n  funct ions  of the chiral 

G r o s s - N e v e u  model ,  and  possibly also in the invest igat ion of the scaling limit of 

Z ( N )  genera l iza t ions  of the Ising model .  

O n  the o ther  hand  in the Schwinger mode l  we reob ta in  we l l -known results f rom 

a different  po in t  of view. We  were also able to compute  via path integrals the 

corre la t ion funct ions  in a non -canon ica l  gauge like the x/Tr gauge, exhibi t ing a 

mechan i sm that  seems to go b e y o n d  the classical ' t  H o o f t - A t i y a h - S i n g e r  one.  
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